773 research outputs found

    Locking Local Oscillator Phase to the Atomic Phase via Weak Measurement

    Full text link
    We propose a new method to reduce the frequency noise of a Local Oscillator (LO) to the level of white phase noise by maintaining (not destroying by projective measurement) the coherence of the ensemble pseudo-spin of atoms over many measurement cycles. This scheme uses weak measurement to monitor the phase in Ramsey method and repeat the cycle without initialization of phase and we call, "atomic phase lock (APL)" in this paper. APL will achieve white phase noise as long as the noise accumulated during dead time and the decoherence are smaller than the measurement noise. A numerical simulation confirms that with APL, Allan deviation is averaged down at a maximum rate that is proportional to the inverse of total measurement time, tau^-1. In contrast, the current atomic clocks that use projection measurement suppress the noise only down to the level of white frequency, in which case Allan deviation scales as tau^-1/2. Faraday rotation is one of the possible ways to realize weak measurement for APL. We evaluate the strength of Faraday rotation with 171Yb+ ions trapped in a linear rf-trap and discuss the performance of APL. The main source of the decoherence is a spontaneous emission induced by the probe beam for Faraday rotation measurement. One can repeat the Faraday rotation measurement until the decoherence become comparable to the SNR of measurement. We estimate this number of cycles to be ~100 cycles for a realistic experimental parameter.Comment: 18 pages, 7 figures, submitted to New Journal of Physic

    Terahertz frequency standard based on three-photon coherent population trapping

    Full text link
    A scheme for a THz frequency standard based on three-photon coherent population trapping in stored ions is proposed. Assuming the propagation directions of the three lasers obey the phase matching condition, we show that stability of few 10−14^{-14} at one second can be reached with a precision limited by power broadening to 10−1110^{-11} in the less favorable case. The referenced THz signal can be propagated over long distances, the useful information being carried by the relative frequency of the three optical photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2 (24/05/2007

    Coupling a single atomic quantum bit to a high finesse optical cavity

    Get PDF
    The quadrupole S1/2_{1/2} -- D5/2_{5/2} optical transition of a single trapped Ca+^+ ion, well suited for encoding a quantum bit of information, is coherently coupled to the standing wave field of a high finesse cavity. The coupling is verified by observing the ion's response to both spatial and temporal variations of the intracavity field. We also achieve deterministic coupling of the cavity mode to the ion's vibrational state by selectively exciting vibrational state-changing transitions and by controlling the position of the ion in the standing wave field with nanometer-precision

    Aging measurements with the gas electron multiplier (GEM)

    Get PDF
    Continuing previous aging measurements with detectors based on the Gas Electron Multiplier (GEM), a 31×3131\times 31cm2^2 triple-GEM detector, as used in the small area tracking of the COMPASS experiment at CERN, was investigated. With a detector identical to those installed in the experiment, long-term, high-rate exposures to 8.98.9keV X-ray radiation were performed to study its aging properties. In standard operation conditions, with Ar:CO2_2 (70:30) filling and operated at an effective gain of 8.5⋅1038.5\cdot 10^3, no change in gain and energy resolution is observed after collecting a total charge of 7mC/mm2^2, corresponding to seven years of normal operation. This observation confirms previous results demonstrating the relative insensitivity of GEM detectors to aging, even when manufactured with common materials

    Efficient Photoionization-Loading of Trapped Cadmium Ions with Ultrafast Pulses

    Get PDF
    Atomic cadmium ions are loaded into radiofrequency ion traps by photoionization of atoms in a cadmium vapor with ultrafast laser pulses. The photoionization is driven through an intermediate atomic resonance with a frequency-quadrupled mode-locked Ti:Sapphire laser that produces pulses of either 100 fsec or 1 psec duration at a central wavelength of 229 nm. The large bandwidth of the pulses photoionizes all velocity classes of the Cd vapor, resulting in high loading efficiencies compared to previous ion trap loading techniques. Measured loading rates are compared with a simple theoretical model, and we conclude that this technique can potentially ionize every atom traversing the laser beam within the trapping volume. This may allow the operation of ion traps with lower levels of background pressures and less trap electrode surface contamination. The technique and laser system reported here should be applicable to loading most laser-cooled ion species.Comment: 11 pages, 12 figure
    • …
    corecore